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SUMMARY

In this report, we presented two major parts of our research in radar detcction
performance of over resolved targets.

In the (irst part of this report, we investigatc the numerical problems in computation of
radar dctection performance. We found that a significant difficulty in the computation of
radar detection performance is that many involved formulas, such as incompletc Toronto
functions and modified Bcsscl functions, have very bad numerical behaviors. This fact Icads
to crrors of the results. We developed numerical mcthods to overcome this difficulty and thus
obtained much more accuratce resuls.

In the second part of this report we investigated the effects of energy distribution on the
radar detcction performance. In the calculation of radar detection performance, it is generally
assumcd that the energy is uniformly distributed over the resolution cclls. However, in practice
the cells may have different encrgy. In these cascs, modifications are necessary in computing
the detection performance. We developed a realistic model of encrgy distribution, and found
that the probability of detection gencrally tends to increcasc when the encrgy is not uniformly
distributed. The phenomena are intcrpreted by the shape of the curves corresponding to

uniformly-distributcd cnergy.
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Part 1

NUMERICAL METHODS IN COMPUTATION OF RADAR

DETECTION PERFORMANCE




INTRODUCTION

The formulas to compute radar detection performance can be found in many literaturcs,
such as [ 1]-{9]. Ref. [1] uses thosc formulas (o plot a large amount of {igurcs which show the
probability of detection vs. signal-to—noisc ratio for various (arget models, pulsc numbcrs, and
cell numbers. These figures arc very important in design and development of radar systcms,
as well as in radar signal processing. The target modcls studied in Ref. [ 1] include

1) Single pulse, con<tant amplitude scaticrers,

2) Single pulsc, Rayleigh scatierers,

3) Singlc pulse, dominant plus Raylcigh scattcrers,

4) Multi-pulses, constant amplitude scattcrers,

5) Multi-pulscs, slow fluctuating targets, Rayleigh scatterers,

6) Multi-pulses, fast fluctuating targets, Raylcigh scattercrs,

7) Multi-pulses, slow fluctvating targets, dominant plus Rayleigh scatterers,

8) Multi-pulses, fast fluctuating targets, dominant plus Rayleigh scatterers.

A serious difficulty existing in radar detcction performance calculation is that many
formulas involved have very bad numerical behaviors, and thus lead to significant errors of the
results. Typical numerical crror sources are truncation of numbers, subtraction of ncarly equal
numbers, truncation of serics, numerical infegration, overflov. underflow, and opcn-range
intcgration. The overflows and underflows are mainly caused by (wo involved special
functions—incompletc Toronto functions and modificd Bessel functions.

Most computers can handle overflows and undcrflows automatically. The compulters
assign a maximum representable valuc to the variable which generates overflow, and assign
zero 1o the valuable which gencrates underflow. In most cases, overflow will Icad to significant
crror of the results. And in some cascs, underflow will lead to significant crrors. We can
identify the underflow cases which will lead to crror and the cascs which will not. To ensurc

the accuracy of the results, we must eliminate all the overflow cases and the underflow cases




which will lead to error.

In this report, we will analyze the causes of the numerical difficultics, and develop the
methods to overcome thesc difficulties. The methods are used (0 compute the probability of
detection for various target models, pulse numbers, and ccll numbers. Many of the figures in
this rcport are plotted to show the probability of detection against the signal-to—noise ratio.
The figures in this rcport are compared with those from [1]. Many of the figurcs show
significant difference from thosc of [1]. One of the purposes of the work in this part of the
report is to use the numerical methods in Part 11 of this rcport, which investigates the cffects
of energy distribution on the radar dctection performance. The methods developed here can

also be applied to the problcms other than radar dctection.

THE INVOLVED FORMULA

The formula involved in computation of radar dctection performance can be found in
various literatures. The formulas listed below arc obtained from Ref. [ 1]. It is assumed that the
energy is uniformly distributed over the resolution cclls.

The relationship between false alarm probability, P, and threshold, Yy, is given by

M .
P, =1- (‘l—cxp Yy ) for single pulsc cascs (1.1a)
and
Y M i | (1.1b)
P, =1- [I (_.1.3_ ’ N—l)] for multi-pulse cascs A0

wherc M is the total number of resolution cclls; N is the numbcer of pulscs. I(u, s) is the

incomplete Gamma function cxpressed by

uVTHFs
l(u,s)=f e ¢

0 s!

The probability of detection, Py, is given by

Py=1-(1-P )" (1.3)




where Py, is the probability of a single ccll to accross the threshold, and has different
cxpressions for different target modcls, as shown below.

1) For single~pulsc constant amplitude scattercrs, Pyyy is given hy

Pam = | VE (1.4)

T
vy, O VRN |

where E is the total signal cnergy, Ny is the total noise, and Tg[m,n,r] is the incomplete

Toronto function which has the following cxpression:

n-m+ 1

_r2 M 5
.[;;(m.ﬂ,l‘) =2r e T /J [m~n e——l Bn(zr() dt (1.5)
70
and B,(7) is the nth order modificd Bessel function expressed by cither

o ]
Bnp=3 1 Mt 162
" k=0 k!'(k+n) o12) (1.62)

or

(7./2)" ! 2 -2 -n (1.6b)
F(F 12 1 (172) f_l (-t ) c dt

B =

where T'(n) is the Gamma function.

2) For single-pulse Rayleigh scattcrers, Py, is given by

p M 1.7
dm = exp(— ]+E/(2MN0)) ()

3) For singlc-pulse dominant plus Raylcigh scattcrers, Py, is given by

p 1 ( 4MN,, Y
dm = — 1+ — + )
| + 4AMNyE E |+ '15/(4MN0)

Yy,
. (,xp(— T VMMNO) ) (1.8)

4) For multi-pulse constant amplitude scattcrers, Py is given by




Pym = 1-T 2N=1, N-1, VNE torer - (1.9)
¢ ‘/——th ' YNE /(MN,) |

where N is the number of the pulses.

5) For multi-pulse slow-{luctuating-target Raylcigh scatterers, Py, is given by

y | N-1
Pam = 1- 1 == ,N-2] + 1+-—___—)
! l(\"N—l ) ( NE/(2MN,)
Yb ]( Yo N
-cxp(' 1 +NE/(2MN0))' V'N=-1(1+2MNy (NE))’

_2) (1.10)

6) For multi-pulse fast-{luctuating-target Raylcigh scatlerers, Pg,, is given by

Yo (1.11)
Pam = 1- '(J‘ﬁ (1+E/ 2MN)) ’N") '

7) For multi-pulse slow-fluctuating—target dominant plus Rayleigh scatierers, Py, is

given by

o0
Pam = [ P(V)ay (1.12a)
Y

[}
where

( | )N—Z
v(1+ X@
oY) - NE/UMN)) oxpf =Y )
(1+NE /(4MN0))2 \(1+ NE /(4MN))
(] ' 1 )N-—I / ¥
(N-2)| 1+ NE /(4MN) . -
- %) K. XP{(1 + NE /(4MN ))
- N
(I+NE/(4MN0))2

YN“ exp(-Y)

+
(N-2)! (1+NE /(4MN0))2 (1.12b)

and




Y
K = I(\/'ﬁ?l (|+4MN0/(NE))’N‘2) (1.12¢)

8) For multi-pulse fast-fluctuating—targct dominant plus Rayleigh scaticrers, Pyy, is

given by
N! N | E .k
Pam = 1- - . z ( )
(+EAMNYN ko K(N-R L AMN,
I ( le
) = , N+k-1
Vﬁ+K(|+E/(4MN0)’) ) (1.13)

THE NUMERICAL DIFFICULTIES

The formulas involved in computation of radar dctcction arc given in the abovce scction.
Most numerical difficulties are caused by the incompletc Toronto function, modified Besscl
function and the open-range integral.

The incomplete Toronto function and the Bessel function will generate many overflows
and underflows. For the opcn-range integral in Eq. (1.12a), the function P(Y) may dccay
slowly with Y. Thereforc, in order to obtain accuratc results, we must take a large upper limit
of the integral. However, when the variable Y hecomes large, underflows and overflows may
occur in computing P(Y). Also large integral range will result in large computational time.

In the incompletc Toronto function (sce Eq. (1.5)), the following problems may appcar:

1. The factor " ™ *! may underflow when r is large and m is much greater than n.

2. The factor exp(-r?) may underflow when r is large.

3. In the case where m is much larger than n, the factor t™ " may underflow or overflow
when t is small or large, respectively.

4. The factor cxp(-t?) may undcrflow when t is largc.

6




In the modified Bessel function, if the serics form (Eq. (1.6a)) is used and 7 is not small,
we must sum up many terms in order (o obtain accuratc results. Then, the factors (7/2)° + 2%,
k!, and (k + n)! may overflow. I the integral {orm (Eq. (1.6b)) is used and n is 7zcro, there are
singular points at (=-1 and (= |. Thesc singular points will scriously degrade the accuracy of
the results.

In Eq. (1.12b), when Y is large, the factor YN'! may overflow, the exponential factors
may underflow. Also large valuc of Y may lead to problecms in incomplctec Gamma lunction
(Eq. 1.2)). In thc incomplete Gamma function, the factor ¢ ' may underflow and the factor ¢
may overflow.

The other numerical error sources include truncation of scrics, truncation of numbers,
and numcrical integration. Some scries, such as thc modificd Besscl function, may dccay
slowly with the index. Then if the scrics arc truncated too carly, the results are not accurate;

whilc if the series are not truncated carly, overflows or underflows may occur.

THE NUMERICAL METHODS

Itis relatively easy to reduce the crror caused by truncation of numbcers and numcrical
integral. We can rcduce the errors caused by truncation of numbcrs by using double precision
variables which arc generally sulficicnt. And we can reduce the errors caused by numcrical
integration by dividing the intcgration intcrvals fincly. Also if double precision variables arc
uscd, we {ind that the crrors caused by subtraction of numbcrs arc not scrious.

To improve the behaviors of the modificd Besscl function, we usc the intcgral formwhen
n is not zcro and usc the scrics form when nis zero. This method can reducc large numbers
of overflows and underflows and to avoid the singular problems.

The remaining difficultics arc overflows and underflows. To handlc these problcms, we
classify the overflows into the following pattcrns:

1. Set " when t and S are small and n is largc. In this casc the factor (" overflows.




Gencrally, when a factor overflows, there should be another factor which is small, othcrwisc
the problem can not be solved. In this pattcrn we can solve the problem by using an cquivalent

form of ‘—n +In S/int

2.Ser"when rand narc large, S issmall. In this casc, the factor r" overflows. We cansolve

the problem by using an equivalent form of (" ¥/ S/ ¢

3. S«Xt; when some of (; overflows and S is small. In this casc, we can solve the problem

by using an cquivalent form of Z(Set;).

Similarly, we can classify undcrflows into the following patierns:

1. Becxp(-1) when B and tarc large. In this casc, the factor exp(-t) underflows. Generally
compuicr will assign zcero to the underflowed variables. This method will not introduce crrors
if no factor is large. Therefore, we only need to take care the cases with a large [actor, B. In
this pattern, we can solve the problem by using an cquivalent form of cxp(-t+/nB). If the
original form is used, the value of the expression is zcro, but the equivalent form may give

non-zcro valuces.

n . .
2. B«t" when tis small, B and n are largc. In this casc, the factor (" underflows. We can

solve the problem by using an cquivalent form of (" 7 B/t

3. Ber "whenr, n, and B arc all large. In this case, the factor r " undcrflows, and we can

. . -n+nB/inr
solve the problem by using an cquivalent form of ¢+ MWV T

4. B+Zt; when some of (; underflows and the sum is small. We can solve the problem by
using an cquivalent form of Z(Bet;). If thc sum is not small, the underflowed term can be
ncglected without introducing crrors.

By using these method, we can significantly improve the accuracy of the results. The
mcthods can climinatc all the overflows. Although some underflows still exist, they will not
introduce crrors; €.g., all the factors arc small, or a tcrm in a scrics is ncglectable compared

with other terms in the serics.




THE RESULTS

Therc are 39 independent figurces for various target modcls and pulsc numbersin{1]. The
figurcs shows the probability of detcction vs. the signal 1o noise ratio for different ccll
numbers. By using the numcrical methods developed above, we reproduced all of those
ligures.

We compared the figures with thosc in | 1], and found that about 36% of our reproduced
figures are significantly different from thosc in | t]. The others are cssentially the same.

Figures 1.1-1.14 show thc comparison of the figurcs withsignificant differences. Figurcs
1.1a-1.14a are the recproduced ones by using thc numerical methods in this report. Figurcs
1.1b-1.14b are the corrcsponding figures from [ 1]. Figurcs 1.15-1.39 show the figurcs without

significant differcnces (with good numerical bchaviors).

SUMMARY

The formula involved in calculation of the radar detection performance have bad
numerical behaviors, and thus lead to errors of the results. Our numecrical methods developed
can overcome those difficultics, and give much morc accuratc results.

Incomplete Toronto function, modified Bessel function and open-—-range intcgration are
main sourccs of numerical problems.

The target models with good numcrical behaviors includes single-pulse Raylcigh
scatterers and single-pulse dominant plus Raylcigh scattcrers. The target models with bad
numecrical behaviors include singlc-pulsc constant amplitude scaticrers and multi-pulse
constant amplitude scaticrers. The target models with some numcrical problems, cspecially
when N and Yy, are large, include multi-pulse Raylcigh scatterers (slow fluctuating or fast
fMluctuating targets) and multi-pulsc dominant plus Raylcigh scatterers (slow fluctuating or

fast fluctuation targets).
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Figurc 1.18 The reproduced figure for single—pulsc dominant plus Raylcigh
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Figurc 1.20 The reproduced figurc for single-pulse dominant plus Raylcigh
scattercrs when P, = 1.E-8
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Figure 1.21 The reproduced figure for 4-pulsc slow-fluctuating Rayleigh
scattcrers when P, = | LE-2
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Figurc 1.22 The reproduccd figure for 4-pulse slow—{luctuating Raylcigh
scatterers when P, = 1LE-5
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Figurc 1.24 The reproduced figure for 16—pulsc slow~[luctuating Raylcigh
scatterers when P, = 1.E-2
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Figure 1.25 The reproduced figure for 16-pulsc slow-fluctuating Raylcigh
scatterers when P, = 1LE-5
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Figurc 1.26 The reproduccd {igurc for 4-pulsc last-{luctuating Raylcigh
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Figurc 1.27 The reproduced figure for 4-pulsc fast—tluctuating Raylcigh
scatterers when Pg, = 1. E-5
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Figurc 1.28 The reproduced figure for 4—pulsc fast-{luctuating Raylcigh
scatterers when P, = 1.LE-S
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Figure 1.31 The reproduccd figure for 4—pulsc slow-{luctuating dominant plus
Rayleigh scatterers when P, = 1.LE-2
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Figure 1.32 The reproduced figurc for 4-pulse slow-{luctuating dominant plus
Rayleigh scatterers when P, = 1.E-5
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Figure 1.33 The reproduced figure for 4-pulsc slow-fluctuating dominant plus
Rayleigh scattercrs when P, = 1.E-8
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Figure 1.34 The reproduced ligure [or 16-pulsc slow-{Tuctuating dominant plus
Rayleigh scattcrers when P, = 1.E-S
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Figure 1.35 The reproduced figure for 4-pulsc fast-fluctuating dominant plus
Rayleigh scatterers when Pg, = [.LE-2
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Figurc 1.36 The reproduced figure for 4-pulse last-fluctuating dominant plus
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Figure 1.37 The reproduccd figurc (or 4—pulsc fast—{luctuating dominant plus
Rayleigh scatterers when Pp, = 1. E-8
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Figurc 1.38 The reproduced figure [or 16-pulsc fast—{Tuctuating dominant plus
Rayleigh scattcrers when P, = 1.E-2
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36




Part 11

THE EFFECTS OF NON-UNIFORMLY DISTRIBUTED ENERGY

ON RADAR DETECTION PERFORMANCE
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INTRODUCTION

Radar detection performance has been studied for several decades, e.g. [1]. In the
cxisting works, it is generally assumed that the cncrgy is uniformly distributed over the cells.
In [ 1], the probability of detection was plotted vs. signal-to-noisc ratio for different numbcer
of cclls and different target modcels under the assumption of uniformly-distributed cnergy.
The target models studied in 1] includes:

1) Single pulsc, constant amplitude scaticrers,

2) Single pulse, Rayleigh scatterers,

3) Single pulse, dominant plus Raylcigh scaticrers,

4) Multi-pulses, constant amplitudce scatlcrers,

5) Multi-pulses, slow fluctuating targets, Raylcigh scatterers,

6) Multi-pulscs, fast fluctuating targets, Raylcigh scattercrs,

7) Multi-pulses, slow fluctuating targets, dominant plus Rayleigh scattercrs,

8) Multi-pulses, fast fluctuating targets, dominant plus Rayleigh scatterers.

However, in practical applications, the cells may have diflcrent encrgy; i.e., the cnergy
is not uniformly distributed over the cells. In these cases, the actual probability of detection
will differ from that with uniformly distribuated encrgy and most of the formula involved in
computing the probability must be modificd.

A difficulty in studying the effccts of energy distribution is causcd by too many possible
distribution manors of the cnergy. To overcome this difficulty, we have to develop a simple
cnergy distribution model which can well represent the practical cascs.

In this part of the report, we will make all the necessary modiflications to the formula
involved, develop asimple and realistic model of cnergy distributionwhich is described by only
two parameters. Then we will compule the probability of detection for different target models,
and discuss the change of detcction probability causcd by the energy distribution. Finally, the

change will be interpreted by the results corresponding to uniformly distributed cncrgy.
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FORMULATION

To develop the energy distribution model, we assume that the total number of resolution
cclls, M, is given and the energy of the cells is fallen into a preset number of energy levels. The
energy of the second level is twice the energy of the 1st level, the energy of the 3rd levcl is three
times the energy of the Ist level, and so on.

Generally, the energy of more cells is in the middic levels, and encrgy of only a [cw cclls
is in the uppcr levels and lower levels. Therefore, we assume that the number of the cclls with
spccific energy is normally distributed over energy Icvels. The number of cells at energy level

E; is given by

=\ 2
M = Sexp (_ (_Ex_‘_i.) (1=1,2,..N) @

202

wherc Ny is the total number of energy levels. Since My is generally not an integer at an energy

level, it has to be rounded. In Eq. (2.1), E and ¢ arc frce paramcters (o control the shapc of
the distribution, and S is so sclected thal the total number of cells equals to the given number,
M. Figure 2.0 shows an examplc with eight cnergy levcls.

Note the difference between energy distribution over cells and the distribution of the

numbcr of cells over the energy levels. When o is small, the number of cells is distributed
ncarby E; i.c., the numbcr of cclls is uncvenly distributed over the encrgy levels. In this casc,

all the cells have almost the same cnergy, E; i.c., the cnergy is almost uniformly distributed
ovcer the cells.
When the encrgy is not uniformly distributed over the cells, most of the formula given

in Ref. [1] must bc modificd. The probability of detection is given by

N M,
Py = l—iLll(l-pdm) (2.2)

where M; is the number of cclls at the ith cnergy level. Corresponding to differcent target
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modcls, the [ormula to compute Pd“‘i arc given by
(1) Single Pulsc, Constant Amplitude Scatterers

P = |- Vi
dmi | T\/?; I 1,0, Ei/ M i]\]0 l (23)

where Tyli, j, k] is the incomplete Toronto function; Ny is the total noisc encrgy: I_ii is

the total encrgy at ith level; Yy, is the threshold. The formula to compute Ei and Yy, will be

given later.

(2) Single Pulsc, Rayleigh Scattercrs

Y b
P = cxp{- 2.4
dmi P 1 + Ei/ZMiNO ( )
(3) Singlc Pulse, Dominant plus Rayleigh Scattcrers
1 4M:N
Pdmi= = (|+ -l 0 + Y )
Yo
. cxp(— _ ) 2.5
L+ E /4MN,
(4) Multi-Pulscs, Constant Amplitudc Scatterers
P = 1- ———
am = =g IN-LNLANE N, | (2.6)

where N is the number of the pulscs.
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(5) Multi-Pulses, Slow Fluctuating targcts, Raylcigh Scattcrers

v | N-1
Pyn = 1—[(——b-—,N—2) +(1 +__T__)
i NE/2M.N,

Yo I Yo
'CXP(_ 1+NE/2MiN0)' (JN_“|(1+2MiN,{NEi)

where I(x, j) is the incomplete gamma function.

(6) Multi-Pulses, Fast Fluctuating targets, Raylcigh Scatterers

Yy
Pam = 1- l(J'ﬁ (1+E/2M;N) *N")

; N—Z) 2.7)

2.8)

(7) Multi-Pulses, Slow Fluctuating targcts, Dominant plus Raylcigh Scatterers

Fam, = fy PV dY (2.92)
where h_ . N2
P(Y) (1 T, K . oxpf =Y
= . . cX —
( +NEi/4MiN0)2 k(l+NEi/4MiN(?)
L \N-I . y
(N—Z)(' + NFZ./4M.N0) o - )
— | ] p —
- 2o KL Pl nEamN)
(1+NE/AMN)
YN_I cxp(-Y)
(N=2)! _ 7 (2.9b)
(1+NE/AMN)
and
Y
K- ](" N-1 (1+4M;Ny/NE) 'N”Z) (2.9¢)




(8) Multi-Pulses, Fast Fluctuating targets, Dominant plus Rayleigh Scatterers.

b N! N | E, ¥

(Imi =1- - . z ( )
(+EAMNIN =g KN L 4MiN,

Yy

. [( §
YN+ k (I+EAMN)

, N+k-1 ) (2.10)
The threshold, Yy, is rclated to false alarm probability, Pg,, by

(2.11a)

fa

Y M
P, = - (l (T/——rz‘ , N—l)) for multi-pulsc cases (2.11b)

The total signal energy in a given encrgy level, E,—, is rclated to the total signal encrgy, E, by

. M ,
P =1- (I—exp -Y) ) for single pulsc cascs

and

- N,
E = 31 M;E, (2.12)

-

N
E =

where M; is the number of cclls in the ith energy level, E,, is the base cnergy. Then

- N
- _ = /
Ei— 'MiEh—'MiE/z iM; (2.13)
i=1 4

RESULTS

Corresponding 1o different target modcls, diffcrent number of cells, diffcrent pulse
numbers, and different encrgy levels, we have plotied a number of figures which show the
probability of detcction vs. the ratio of total encrgy to noise. We plotted cight scts of figures
corresponding to eight target models. Four pulscs arc assumed for multi-pulse cascs. Eachsct

consists of scven figurcs, which are described as follows:
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(a) Figures 2.1a-2.8a show the comparison of deteclion performance betwcen uniformly
distributed cnergy and non—uniformly distributed encrgy when M =2 and a false alarm
probability of 0.01. This false alarm probability corresponds to a Yy, valuc of 5.296 for
single pulse cases and a Yy, value ol 10.97 for multi-pulse cascs. M is the total number of
cells and Yy, is the threshold. When energy is uniformly distributed over the cells, both cell
have the same encrgy; when energy is non-uniformly distributed over the cells, the encrgy

of one of the cell is twice that of the other cell.

(b) Figures 2.1b--2.8b show the same cascs as thosc in (a) except a falsc alarm probability of
1.E-8. This falsc alarm probability corresponds to a Yy, value of 19.11 for single pulse cases

and a Y, value of 27.35 for multi—pulse cascs.

(c) Figures 2.1c-2.8c show the comparison of detection performance between different values

of g in Eq. (2.1) when N; =8, M= 10, E= 5, and a false alarm probability of 0.01. This

false alarm probability corresponds to a Yy, value of 6.903 [or single pulse cases and a Yy,

value of 13.05 for multi-pulse cases. Eis the encrgy level with largest number of cells (see
Eq. (2.1)), N, is the number of encrgy levels, M is the total number of cells. The cnergy

is more uniformly distributed over the cells when ¢ is smaller.

(d) Figures 2.1d-2.8d show the same cases as those in (c) cxcept a false alarm probability of
I.E-8. This false alarm probability corresponds to a Yy, valuc of 20.72 for single pulse cascs

and a Y}, value of 29.15 for multi-pulsc cascs.

(¢) Figures 2.1e-2.8c show the comparison of detection performance between different valucs

of Ewhen N;=8, M= 10, 0=0.5 and a falsc alarm probability of 0.01. This falsc alarm
probability corresponds to a Yy, valuc of 6.903 for singlc pulsc cases and a Yy, valuc of 13.05

for multi-pulse cascs.
(N Figurcs 2.1{-2.8f show the same cascs as thosc in (¢) except a=3.0.
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(g) Figures 2.1g-2.8g show thc same cases as those in (¢) except 0=2.0 and a falsc alarm
probability of 1.E-8. This false alarm probability corresponds to a Y), value of 20.72 for

single pulse cascs and a Yy, value of 29.15 for multi-pulse cases.

In the figures, the horizontal axis denotes the ratio of total signal cnergy to (otal noise

cnergy (E/Ng) in decibel. The vertical axis denotes the probability of detection in pcreentage.

Y1 is the threshold, M is the total numbcr of cells, “Level™ is the total number of encrgy levcels,

“Mean” denotcs E.

The following eight scis of figures describe differcnt target modcls:

Figurcs 2.1a-2.1g: single-pulse constant amplitude scatlerers;

Figurcs 2.1a-2.2g: single—pulse Rayleigh scattcrers;

Figures 2.3a-2.3g: single-pulse dominant plus Raylcigh scatterers;

Figures 2.4a-2.4g: four—pulscs constant amplitude scatterers;

Figures 2.5a-2.5g: four—pulse slow-{luctuating-target Raylcigh scatterers;

Figures 2.6a-2.6g: four-pulse fast-{luctuating—target Raylcigh scaticrers;

Figures 2.7a-2.7g: four—pulse slow—fluctvating-target dominant plus Rayleigh
scaticrers; Figs. 2.7c and 2.7{ are omitted (o save computational efforts.

Figurcs 2.8a-2.8g: four-pulsc fast—fluctuating—-target dominant plus Rayleigh

scattcrers.

Figs. 2.9-2.12 show thc encrgy distribution of the cclls over energy levels for various o
and E when the total number of cells is 10 and the total number of encrgy lIcvels is 8. When

o is small, the cells are distributed over a few encrgy Icvels nearby E, i.e., the cells have nearly

cqual energy. This situation is similar as uniformly--distributcd cnergy over the cells. When

o=0.1, all the cells are in the energy level E; i.c., the cnergy is uniformly distributed over the

cells.

44




Table 2.1 shows the distribution of the cells over energy levels for different values of o

when total number of cells is 10 and total number of encrgy level is 8 and E=5.

Table 2.1 Distribution of the 10 Cclls over 8 Encrgy Levcels for Diffcrent
Values of g when E = 5.

Energy

S Level| 1 2 3 4 S 6 7 8

0.1 0 0 0 0 10 0 0 0

0.5 0 0 0 | 8 1 0 0

1.0 0 0 1 ) 4 2 1 0

2.0 0 1 1 2 2 2 t 1

3.0 1 | 1 1 3 1 1 1
DISCUSSION

The figures in this part of the report show the foliowing common phcnomenon for cvery

target models:
When Yy, is small, thc probability of detection is not significantly alfccted by energy
distribution. When Yy, becomes larger, the cffects of cnergy distribution bccome more

significan!. For example, whcn Y =29.15 and the total number of cclls is 10, in the case of
4-pulse constant amplitude scatterers the detection probability is about 20% when E/Ng= 15

db and the encrgy is uniformly distributed over the cells (sce Fig. 2.4d, o= 0.1). However, when

o=3.0 (encrgy is not uniformly distributed over the cells), the detection probability becomes

about 55%.

In addition to this common phcnomenon for cvery target mode. We can also find that

the cffccts of encrgy distribution arc also highly affcected by target modcels. We found that
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multi-pulse constant amplitude scatterers are most scriously alfccted by energy distribution;
single pulse constant amplitude scattercrs arc the sccond; then it comes in the order of
multi-pulse, fast-{luctuating—target dominant plus Raylecigh scattercrs, multi-pulsc,
fast-fluctuating—target Raylcigh scaticrers, multi-pulsc slow-fluctuating—target dominant
plus  Rayleigh scatlerers, multi-pulse slow-fluctuating-target Raylcigh scaticrers,
singlc-pulsc dominant plus Rayleigh scatterers, and finally single—pulse Rayleigh scatterers.
For constant amplitude scattcrers (single-pulsc or multi-pulse), the effects of the encrgy
distribution are similar no matter the probability of detection is low or high. However, for
other target models (Raylcigh scattcrers and dominant plus Rayleigh scattcrers), the cffccts
of cnergy distribution is significant in somce of the probability range and less significant in the
other ranges. Gencrally, non—uniformly distributcd cnergy will increase the probability of
detcction and the cffects are more significant in low probability ranges. The rcason is that the
threshold is hard (o across in that range and the non—uniformly distributed cnergy increase the
chance to across the threshold significantly for the cells with higher energy.

Let’s define the “cell probability of detection” as Pdmi when the energy is uniformly
distributed. Then the effects of the energy distribution can also be explained by the shape of
the ccll probability of detection. First, it is hclplul to consider the problem with only two cells.
The probability of detcction of the first cell is py, and the probability of detection of the sccond
ccllis p2. When the cnergy is uniformly distributed, p = p2 = p (ccll probability of detection).

The total probability of detcction is given by:
P = 1~(1-p)(I-p,) = 2p-p’ 2.14)

Now, lct’s assumc the energy is not uniformly distributed and the first cell has lower encrgy
and the seccond cell has higher energy. Then py becomes (p-3p;), and p; becomes (p + dpy).

The total probability of detection becomes
P+8P = I-(1-p)(1-p) = P +(1-p)(dp,-3p,) (2.15)

therefore
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3P = (1-p)sp,~5p,) 216

We can sce the trends of 8P from the plot of the p vs. signal-to-noi. ~ .tio in lincar scales.
When the curve is concave-up, 3p; > 8p; and the non-uniformly distributed cnergy will
incrcase the probability of dectection. When the curve is concave—down, 8p, > 8p, , and the
non-—-uniformly distributed energy will decreasc the probability of detection. The increment
ordecrement will clearly depend on how large is the curvature of the curve of p, how the cnergy
is distributed and how large p is.

As an example, Figure 2.13 plots the ccll probability of detcction with different values
of Yy, (6.903, 20.72) for single~pulsc Rayleigh scattcrers when M = 10. The figurc shows that
below 23 db of signal-to—noise ratio the curve is relatively straight when Yy, = 6.903; thercfore,
the probability of detection is not much affccted by the encrgy distribution (sce Fig. 2.2¢). For
Y, = 20.72, Figure 2.13 shows that the curvaturc of the curve is relatively large in certain ranges
of signal-to—noisc ratio. The curve changes from concave—up (o concave-down at about 24
db. Therefore, the probability of detection is more significantly affected by encrgy distribution
in low probability range and is not much affected by encrgy distribution nearby 24 db. And
when the signal-to-noise ratio is below 24 db, non—uniformly distributcd encrgy incrcascs
probability of detection and when the ratio is above 24 db, non-uniformly distributcd encrgy

dccrcases probability of detection (sec Fig. 2.2d).

SUMMARY

In realistic radar dctection, the cells have diffcrent energy. This fact makes modification
(o the ordinary thcory and [ormula nccessary. In this report, we usc a realistic modcel of cnergy
distribution to investigate the probability of dctcction for various target models.

We have found a common phcnomena for cvery target modcel: the clfect of energy
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distribution will hecome more significant when the threshold, Yy, is increcased. However, the
effcct of encrgy distribution will also largely depend on the target models. Constant amplitude
scatlcrers arc most seriously affectcd by cncrgy distribution, dominant plus Rayleigh
scattercrs are the next, and Rayleigh scattercrs are Icast alfccted by encrgy distributions.
Multi-pulse cascs arc morc scriously affccted by cncrgy distribution than singlc—pulsc cascs.
And fast fluctuating targets arc morce scriously affccted by cnergy distribution than slow
fluctuating targets.

The cffect of cncrgy distribution can hc interpreted by a plot of so—called “ccll
probability of dctcction” vs. signal-fo-noisc ratio in lincar scales. When the curve is
concave-up, the non-uniformly distributed encrgy will increase the probability of detection.
When the curve is concave-down, the non-uniformly distributed energy will decreasc the
probability of detection. The increment and decrement will depend on the curvature of the
curve, the energy distribution and the cell probability of detection at the given cnergy-1o—
noise ratio. In most cases, non-uniformly distributced energy will increase the probability of

delection.
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